Biziaev, T., Kopciuk, K. and Chekouo, T. (2025) Using prior-data conflict to tune
Bayesian regularized regression models.
Stat Comput,
35, 1–19. Springer US. DOI:
10.1007/s11222-025-10582-1.
Choi, S. W., Mak, T. S.-H. and O’Reilly, P. F. (2020) Tutorial: A guide to performing polygenic risk score analyses.
Nature Protocols,
15, 2759–2772. DOI:
10.1038/s41596-020-0353-1.
Duncan, L., Shen, H., Gelaye, B., et al. (2019) Analysis of polygenic risk score usage and performance in diverse human populations.
Nature Communications,
10, 3328. DOI:
10.1038/s41467-019-11112-0.
Ge, T., Chen, C.-Y., Ni, Y., et al. (2019) Polygenic prediction via
Bayesian regression and continuous shrinkage priors.
Nature Communications,
10, 1776. DOI:
10.1038/s41467-019-09718-5.
Guo, C., Pleiss, G., Sun, Y., et al. (2017) On calibration of modern neural networks. In: Proceedings of the 34th international conference on machine learning, 2017, pp. 1321–1330.
Mak, T. S. H., Porsch, R. M., Choi, S. W., et al. (2017) Polygenic scores via penalized regression on summary statistics.
PLOS Genetics,
13, e1007128. DOI:
10.1371/journal.pgen.1007128.
Martin, A. R., Kanai, M., Kamatani, Y., et al. (2019) Clinical use of current polygenic risk scores may exacerbate health disparities.
Nature Genetics,
51, 584–591. DOI:
10.1038/s41588-019-0379-x.
Niculescu-Mizil, A. and Caruana, R. (2005) Predicting good probabilities with supervised learning. In:
Proceedings of the 22nd international conference on machine learning, 2005, pp. 625–632. ACM. DOI:
10.1145/1102351.1102430.
Parikh, C. R. and Thiessen Philbrook, H. (2017) Chapter
Two -
Statistical Considerations in
Analysis and
Interpretation of
Biomarker Studies. In
Biomarkers of Kidney Disease (Second Edition) (ed. C. L. Edelstein), pp. 21–32. Academic Press. DOI:
10.1016/B978-0-12-803014-1.00002-9.
Privé, F., Arbel, J. and Vilhjálmsson, B. J. (2020) LDpred2: Better, faster, stronger.
Bioinformatics,
36, 5424–5431. DOI:
10.1093/bioinformatics/btaa1029.
Vilhjálmsson, B. J., Yang, J., Finucane, H. K., et al. (2015) Modeling linkage disequilibrium increases accuracy of polygenic risk scores.
American Journal of Human Genetics,
97, 576–592. DOI:
10.1016/j.ajhg.2015.09.001.