Lecture 09: Causal Inference in Statistical Genetics PUBH 8878, Statistical Genetics

Chiraag Gohel

The George Washington University

2025-10-29

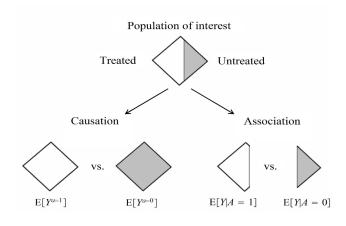
Motivation

- One major goal of epidemiology is to identify modifiable causes of health outcomes and disease (Celentano et al., 2019)
- To enact interventions/treatment on some trait, we first want evidence that the trait causes the outcome of interest

Difference between causation and association

Consider

- Treatment A, where $A = \begin{cases} 1 \text{ if treated} \\ 0 \text{ if untreated} \end{cases}$
- Outcome Y, where $Y = \begin{cases} 1 \text{ if death} \\ 0 \text{ if survival} \end{cases}$
- $Y^{a=i}$ is the outcome that would have been observed under the treatment a=i



From Hernan and Robins (2025)

One solution: Randomization

Exchangeability

$$Y^a \perp A \text{ for all } a \implies \Pr[Y^a = 1 | A = 1] = \Pr[Y^a = 1 | A = 0]$$

- Or, independence between the counterfactual outcome and the observed treatment
- When group membership is randomized, in an ideal RCT, the groups are exchangeable
- \bullet Furthermore, this implies that $\mathsf{E}[Y^a|A=a']=\mathsf{E}[Y^a]$

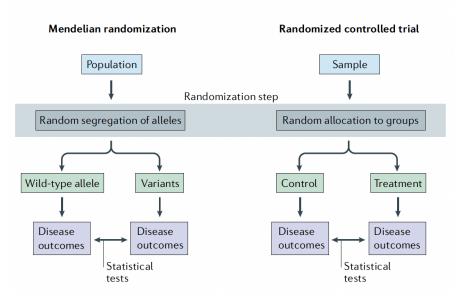
Randomization is often not possible

- \bullet Let's say a researcher wants to estimate the causal effect of smoking (A) on lung health (Y)
- We can't conduct an RCT experiment on the general population here
- Let U be common causes of A and Y (risk preferences, SES, environment)
- Note that $\Pr[Y^a=1\mid A=a]=\sum_u\Pr[Y^a=1\mid U=u,A=a]\Pr[U=u\mid A=a]$
- If $\Pr(U|A=1) \neq \Pr(U|A=0)$, then we do not have exchangeability

A genetic solution?

- However, we can use Mendelian randomization: the distribution of alleles/genes (G) is set at conception and is approximately random.
- ullet Think of G as an as-if randomized assignment that nudges smoking (X)
 - ${}^{\bullet}$ We can compare lung health (Y) across G groups much like RCT arms, scaled by the $G\mbox{-}{\rm induced}$ difference in X
- After adjusting for ancestry/population structure (A), G should be independent of typical confounders (U)

MR compared to RCT



From Figure 1 in Sanderson et al. (2022)

How MR approximates exchangeability

- ullet Use genotype G as an as-if randomized assignment determined at conception.
- Key approximation: for each $a\in\{0,1\}$, $Y^a\perp G$ (often taken conditional on ancestry/population structure), so $\mathsf{E}[Y^a\,|\,G]=\mathsf{E}[Y^a].$
- Timing: the "assignment" (G) happens at conception; effects reflect long-run exposure differences rather than acute treatment.
- Noncompliance: G only shifts X; not everyone changes behavior. MR targets the effect among those whose X is moved by G (a complier-type estimand).
- This mirrors RCT exchangeability, replacing randomized A with (approximately) randomized G.

A more rigorous treatment of concepts in RCT can be found in Evans and Ting (2021)

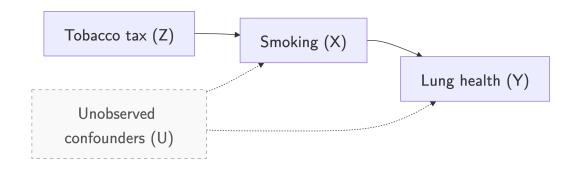
Instrumental Variables

Definition

An **instrument** is a variable that predicts the exposure, but conditional on the exposure shows no independent association with the outcome (Lousdal, 2018)

- Again, consider estimating the causal effect of smoking (A) on lung health (Y)
- ullet Let U be common causes of A and Y
- Consider an instrument Z, recorded tobacco tax levels

Tobacco tax \rightarrow Smoking \rightarrow Lung health

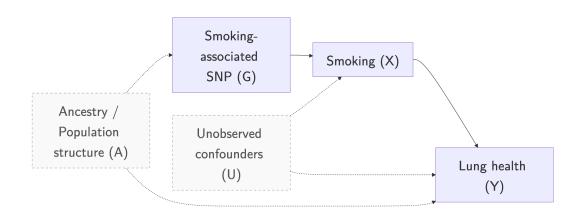


IV DAG

Examples of confounders

- $X \to Y$ confounders (U): socioeconomic status, occupational exposures, ambient air pollution, household/peer smoking, mental health and risk preferences, access to healthcare and preventive care, baseline respiratory conditions.
- $Z \to Y$ threats: smoke-free laws and anti-smoking campaigns, healthcare policy intensity, or regional socioeconomic trends that correlate with both tobacco taxes and lung health.

$\mathsf{SNP} \to \mathsf{Smoking} \to \mathsf{Lung}$ health



Mendelian randomization: $\mathsf{SNP} \to \mathsf{Smoking} \to \mathsf{Lung}$ health

Examples of confounders

- $X \to Y$ confounders (U): socioeconomic status, occupational exposures, ambient air pollution, household/peer smoking, mental health and risk preferences, access to healthcare and preventive care, baseline respiratory conditions.
- Population structure (A): ancestry differences, recruitment center/region, or subtle structure that links allele frequencies and lung health via environmental or clinical differences.
- G → Y threats: horizontal pleiotropy (genetic effects on lung health not via smoking), dynastic effects/assortative mating.

In order for the instrument to provide a valid test of the null hypotehsis that the exposure has no effect on the outcome, certain conditions must hold (Didelez et al., 2010):

1. Relevance

The IV must be associated with the exposure

2. Exchangeability

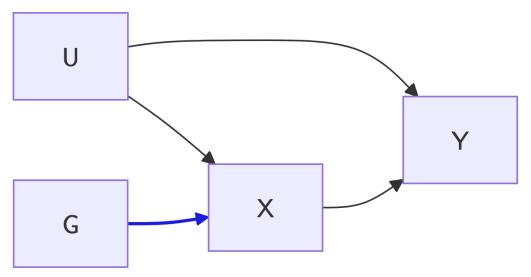
There are no causes of the IV that also influence the outcome through mechanisms other than the exposure of interest

3. The Exclusion Restriction

The IV does not affect the outcome other than through the exposure and does not affect any other trait that has a downstream effect on the outcome of interest.

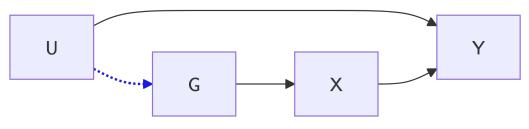
1. Relevance

The IV must be associated with the exposure



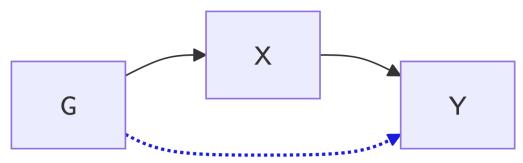
2. Exchangeability

There are no causes of the IV that also influence the outcome through mechanisms other than the exposure of interest



3. The Exclusion Restriction

The IV does not affect the outcome other than through the exposure and does not affect any other trait that has a downstream effect on the outcome of interest.



- Relevance
- 2 Exchangeability
- 3 The Exclusion Restriction

Only the first condition can be formally tested. The other two conditions can be disproved and otherwise assessed through a range of sensitivity analyses, but cannot be demonstrated to be true

For a deeper look into IV methods in Biostatistics, see Hernan and Robins (2025), Baiocchi *et al.* (2014), and Rubin and Imbens (2015)

1. Relevance

- The strength of the instrument can be assessed through the an F-statistic from the regression of the exposure on the instrument
- A common rule of thumb is that an F-statistic >10 indicates a sufficiently strong instrument (Staiger and Stock, 1997)

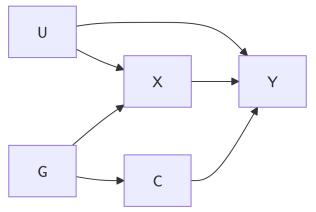
2. Exchangeability

- Confounding of the genetic variants with the outcome can occur due to population structure, assortative mating, or dynastic effects
- Common approaches to mitigate these issues include adjusting for principal components of ancestry, restricting to unrelated individuals, and within-family study designs (Davies et al., 2019)

3. Exclusion Restriction

- Violations can occur due to pleiotropy, where a genetic variant influences multiple traits
- Violations can occur due to linkage disequilibrium

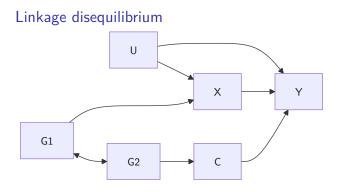
Horizontal Pleiotropy



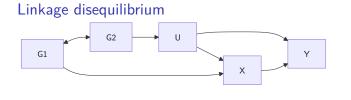
- G : Genetic variant
- | X | : Exposure of interest
- | Y | : Outcome of interest
- U : unmeasured confounder
- C : unmeasured phenotype

Horizontal Pleiotropy U X G

- | G | : Genetic variant
- X: Exposure of interest
- Y : Outcome of interest
- U : unmeasured confounder
- C : unmeasured phenotype

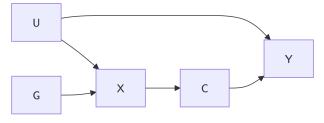


- G : Genetic variant
- X : Exposure of interest
- Y : Outcome of interest
- U: unmeasured confounder
- C : unmeasured phenotype



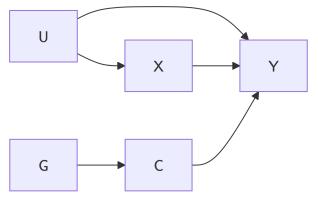
- | G | : Genetic variant
- X : Exposure of interest
- | Y : Outcome of interest
- U : unmeasured confounder

Vertical Pleiotropy

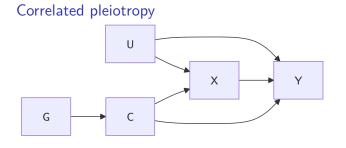


- G : Genetic variant
- X : Exposure of interest
- Y : Outcome of interest
- U: unmeasured confounder
- C : unmeasured phenotype

Misspecification of the primary phenotype

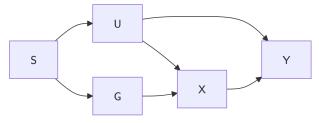


- G: Genetic variant
- X: Exposure of interest
- Y: Outcome of interest
- U : unmeasured confounder
- C : unmeasured phenotype



- G : Genetic variant
- X : Exposure of interest
- | Y | : Outcome of interest
- U : unmeasured confounder
- C : unmeasured phenotype

Population stratification



- G : Genetic variant
- X : Exposure of interest
- Y : Outcome of interest
- U : unmeasured confounder
- S: population structure/ancestry

For a deeper dive into understanding directed acyclic graphs (DAGs) and causal inference, see Pearl (2022)

Point-estimate identifying conditions

- IV1-IV3 are sufficient to test the exact null (no causal effect), not to identify a numeric effect size.
- For a **point estimate**, add one of the following assumptions

Homogeneity

Either

- 1 The effect of the exposure on the outcome is the same for all individuals (estimate is the causal effect of the exposure on the outcome)
- 2 The effect of the exposure on the outcome is independent of the value of the instrument (estimate is the population average causal effect)

Monotonicity

The direction of the effect of the genetic variant on the exposure is the same for everyone

Two Stage Least Squares Estimation

Stage One

• Let X be the exposure of interest, ${\bf G}$ be a $n \times p$ matrix of genetic variants. We can then model

$$X = \pi_0 + \mathbf{G} + v_x$$

Stage Two

ullet The outcome is then regressed upon the predicted value of the exposure, \hat{X}

$$Y = \alpha + \beta \hat{X} + u$$

Where $\hat{\beta}$ is a consistent estimator of the causal effect of X on Y if the IV assumptions hold (Wooldridge, 2010)

```
beta_true <- 1.5 # causal effect of X on Y
theta      <- 0.8 # effect of Z on X (relevance)
alpha      <- 1.0 # effect of U on Y (confounding)
lambda      <- 0.9 # effect of U on X (confounding)</pre>
```

```
X \leftarrow theta * Z + lambda * U + e_x # exposure

Y \leftarrow beta_true * X + alpha * U + e_y # outcome

df \leftarrow tibble(Y = Y, X = X, Z = Z, U = U)
```

```
m_ols <- lm(Y ~ X, data = df)  # OLS estimate

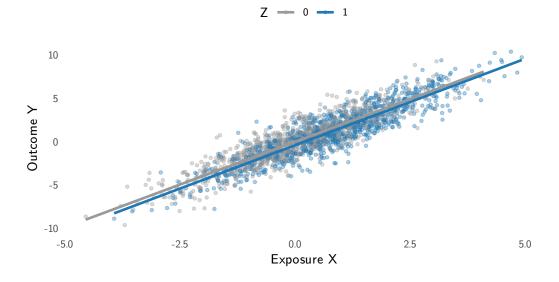
m_stage1 <- lm(X ~ Z, data = df)  # 1st stage: predict X from Z
Xhat <- fitted(m_stage1)  # predicted X from 1st stage

m_tsls <- lm(Y ~ Xhat, data = df)  # 2nd stage: regress Y on Xhat

# First-stage strength (F-statistic on Z)
F1 <- unname(summary(m_stage1)$fstatistic[1])</pre>
```

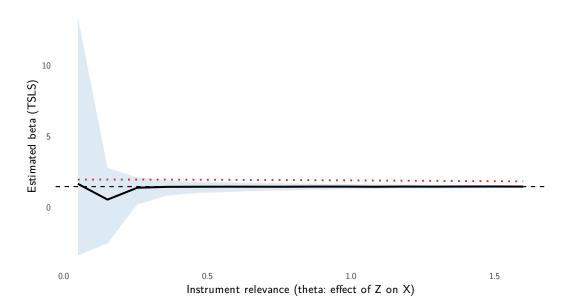
True beta	OLS beta-hat	2SLS beta-hat	F
1.5	1.943296	1.493856	182.5937

Scatter with instrument strata (Z)



TSLS across instrument strength

Ribbon: 2.5-97.5% across simulations; dashed = true beta; dotted = OLS mean



References I

- Baiocchi, M., Cheng, J. and Small, D. S. (2014) Instrumental variable methods for causal inference. *Statistics in Medicine*, **33**, 2297–2340. DOI: 10.1002/sim.6128.
- Celentano, D. D., Szklo, M. and Gordis, L. (2019) *Gordis Epidemiology*. 6th edition. Philadelphia, PA: Elsevier.
- Davies, N. M., Howe, L. J., Brumpton, B., et al. (2019) Within family Mendelian randomization studies. *Hum Mol Genet*, **28**, R170–R179. DOI: 10.1093/hmg/ddz204.
- Didelez, V., Meng, S. and Sheehan, N. A. (2010) Assumptions of IV Methods for Observational Epidemiology. Statistical Science, 25, 22–40. Institute of Mathematical Statistics. DOI: 10.1214/09-STS316.

References II

- Evans, S. R. and Ting, N. (2021) Fundamental Concepts for Clinical Trialists. Boca Raton: Chapman & Hall/CRC.
- Hernan, M. A. and Robins, J. M. (2025) *Causal Inference: What If.* Boca Raton: CRC Press.
- Lousdal, M. L. (2018) An introduction to instrumental variable assumptions, validation and estimation. *Emerg Themes Epidemiol*, **15**, 1. DOI: 10.1186/s12982-018-0069-7.
- Pearl, J. (2022) Causality: Models, Reasoning, and Inference. Second edition, reprinted with corrections. Cambridge New York, NY Port Melbourne New Delhi Singapore: Cambridge University Press.

References III

- Rubin, D. B. and Imbens, G. W. (eds) (2015) Instrumental Variables Analysis of Randomized Experiments with Two-Sided Noncompliance. In *Causal Inference for Statistics, Social, and Biomedical Sciences: An Introduction*, pp. 542–559.
 Cambridge: Cambridge University Press. DOI: 10.1017/CBO9781139025751.025.
- Sanderson, E., Glymour, M. M., Holmes, M. V., et al. (2022) Mendelian randomization. *Nat Rev Methods Primers*, **2**, 1–21. DOI: 10.1038/s43586-021-00092-5.
- Staiger, D. and Stock, J. H. (1997) Instrumental Variables Regression with Weak Instruments. *Econometrica*, **65**, 557–586. [Wiley, Econometric Society]. DOI: 10.2307/2171753.
- Wooldridge, J. M. (2010) *Econometric Analysis of Cross Section and Panel Data*. 2nd ed. Cambridge, MA, USA: MIT Press.